| 1 | Comparison of Three Microphysics Parameterization Schemes in the WRF Model for an | |----|--| | 2 | Extreme Rainfall Event in the Coastal Metropolitan City of Guangzhou, China | | 3 | | | 4 | Yongjie Huang ¹ , Yaping Wang ² , Lulin Xue ³ , Xiaolin Wei ⁴ , Lina Zhang ⁵ , and Huaiyu Li ⁶ | | 5 | | | 6 | ¹ School of Meteorology, University of Oklahoma, Norman, OK, USA | | 7 | ² Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman | | 8 | OK, USA | | 9 | ³ National Center for Atmospheric Research (NCAR), Boulder, CO, USA | | 10 | ⁴ Meteorological Bureau of Shenzhen Municipality, Shenzhen, China | | 11 | ⁵ China Meteorological Administration Training Centre, Beijing, China | | 12 | ⁶ Guangzhou Meteorological Observatory, Guangzhou, China | | 13 | | | 14 | Submitted to Atmospheric Research on Oct 19, 2019 | | 15 | Revised on Jan 27, 2020 | | 16 | | | 17 | Corresponding author: Yongjie Huang (Yongjie.Huang@ou.edu) | | 18 | School of Meteorology, University of Oklahoma | | 19 | 120 David L. Boren Blvd., Norman, OK, USA, 73072 | | 20 | | 21 Abstract 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 An extreme rainfall event in the coastal metropolitan city of Guangzhou, China is simulated by the Weather Research and Forecasting (WRF) model using three bulk microphysics schemes to explore the capability to reproduce the observed precipitation features by these schemes and their differences. The detailed comparison among the three runs in terms of radar reflectivity, precipitation, thermodynamic fields and microphysical processes are conducted. Results show that all the simulations can reproduce the two main heavy rainfall centers in Guangzhou and the first convection initiation. The accumulated precipitation in the simulation using the WSM6 scheme performs better than the others in terms of intensity and distribution compared to observations. The weaker accumulated precipitation in the second heavy rainfall center in the simulations using the Thompson and Morrison schemes result from their more dispersed precipitation distributions dominated by the cold pool intensity and distribution. The latent heating from the water vapor condensation dominates the convection initiation and storm development. The latent cooling from the rain water evaporation dominates the cold pool intensity and distribution, which influences the storm moving and subsequent convection propagation, and finally the intensity and distribution of surface precipitation. Sensitivity experiments of the latent heat confirm the dominant roles of latent heating/cooling, especially the water vapor condensation heating and rain water evaporation cooling, in the differences of the thermodynamic fields, storm development, convection propagation and surface precipitation among the three simulations. **Keywords**: microphysics parameterization; WRF; extreme rainfall; latent heat #### 1 Introduction 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 There still are large uncertainties associated with the microphysics parameterization in current numerical weather prediction (NWP) (Khain et al., 2015). Spectral bin microphysics schemes (SBMs) predict the discretized particle size distribution (PSD) and allow greater PSD characteristic flexibility, which are supposed to be conceptually more realistic and more accurate than bulk microphysics schemes (BMPs) (Khain et al., 2004; Khain et al., 2015). However, Xue et al. (2017) simulated a squall-line event using three spectral bin microphysics schemes coupled into the Weather Research and Forecasting (WRF) Model, and found that different bin microphysics schemes simulated a wide spread of microphysical, thermodynamic, and dynamic characteristics of the squall line. Fan et al. (2017) performed an intercomparison study of a midlatitude mesoscale squall line using the WRF model with eight different cloud microphysics schemes (7 BMPs and 1 SBM), and indicated that there was large variability in simulated cloud and precipitation properties using different microphysics schemes, and SBM did not always outperform the others. Besides, SBMs have a high computational cost due to the prediction of discrete sizes. Therefore, BMPs are still preferred over SBMs in current NWP models (Huang and Cui, 2015; Huang et al., 2016b). Many previous studies have demonstrated different bin or bulk microphysics schemes frequently result in large differences in the simulated storm structures and precipitation characteristics (coverage and intensity) (Li et al., 2009; Dawson et al., 2010; Morrison and Milbrandt, 2011; Van Weverberg et al., 2012; Morrison et al. 2015; Huang et al., 2016a; Fan et al., 2017; Xue et al., 2017; Han et al., 2018; Lee and Baik, 2018; Tiwari et al., 2018; Bao et al., 2019; Falk et al., 2019; Huang et al., 2019c; Johnson et al., 2019; Labriola et al., 2019; Mohan et al., 2019). Morrison and Milbrandt (2011) performed idealized three-dimensional supercell simulations using two double-moment bulk microphysics schemes in the WRF model, and found that many of the key differences between the baseline simulations were attributed to the different approaches in treating graupel and hail. Adams-Selin et al. (2013) indicated that bow echo development and longevity was highly sensitive to the graupel parameterization of microphysics schemes in the WRF model, and faster falling graupel led to more intense cold pools. While Xue et al. (2017) found fast falling hydrometeors have less time melting and evaporating, which leads to weaker cold pool. Choi et al. (2018) demonstrated that one scheme does not work best in all simulations of eight typhoons using five microphysics schemes of the WRF model, and suggested that the hydrometeor characteristics assumed in microphysics schemes should be carefully understood to simulate precipitating clouds. Bao et al., (2019) simulated an idealized twodimensional squall-line using three bulk microphysics schemes in the WRF model, and found that differences in the simulated squall line development were mainly attributed to the differences in the simulated population characteristics (e.g., hydrometeor size distributions) of snow, graupel and rainwater. Falk et al. (2019) simulated an idealized supercell using one bin and one double-moment bulk microphysics schemes with the Regional Atmospheric Modeling System (RAMS) to emphasize the importance of hydrometeor fall speed on the supercell evolution and the assumptions in the schemes may be more important than the scheme class itself. Bryan and Morrison (2012) demonstrated that double-moment schemes outperformed the single-moment schemes through evaluating idealized simulations of a squall line. Luo et al. (2018) simulated a hailstorm event in eastern China using multi-moment microphysics schemes and suggested that multi-moment schemes can produce more realistic hail distribution characteristics. However, some studies also show that single-moment schemes provide better precipitation estimates compared to multi-moment schemes (Parodi and Tanelli, 2010; Cassola et al., 2015; Huang et al., 2019a). It 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 means that microphysics schemes will have different performances in different dynamic and thermodynamic environments, and different types of storms (e.g., squall lines, supercells). It is hard to understand why microphysics schemes result in such different simulations due to too many differences among microphysics schemes, e.g., different fundamental construction of schemes, different assumptions in parameterization of the same microphysical process (Falk et al., 2019). Therefore, more intercomparison and sensitivity studies on microphysics schemes should be performed to explore the dominant factors leading to the different simulations for individual cases. Huang et al. (2019a) simulated an extreme rainfall event in a tropical coastal city using the WRF model nested with a very large-eddy simulation (LES). They mentioned that the simulation with the WRF single-moment 6-class microphysics (WSM6) scheme (Hong and Lim, 2006) outperformed the simulations with the Thompson double-moment scheme (Thompson et al., 2008) and the Morrison double-moment scheme (Morrison et al., 2009) through comparing the simulated radar reflectivity and precipitation against observations. However, the detailed comparison was not shown in their study. Besides, most previous intercomparison studies on microphysics schemes were performed in idealized simulations of squall lines or supercells (e.g., Dawson et al., 2010; Morrison and Milbrandt, 2011; Van Weverberg et al., 2012; Xue et al., 2017; Bao et al., 2019; Falk et al., 2019; Johnson et al., 2019). Therefore, it deserves further study on the differences among simulations with the three different microphysics schemes in this tropical deep convection shown in Huang et al. (2019a). What are the main microphysical pathways to cloud hydrometeor production? What are the main different microphysical processes among these simulations? How do the main microphysical processes influence the storm development? We will try to answer these questions in this paper. 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 The rest of the paper is organized as follows. Section 2 describes the extreme rainfall event and the numerical sensitivity experiments on microphysics schemes. Section 3 presents the results, and section 4 gives the summary and conclusions of the study. ## 2 Event description, model setup and microphysics schemes 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 The extreme rainfall occurred over the coastal metropolitan city of Guangzhou, southern China during 6-7 May 2017. A maximum daily
rainfall of 524.1 mm and a maximum hourly rainfall of 184.4 mm were recorded in this event, causing serious floods and property damage. Huang et al. (2019a and 2019b) conducted an observation analysis and a nested large-eddy simulation (LES) using WRF model to explore mechanisms associated with this extreme rainfall event. This event took place under relatively slowly evolving synoptic and mesoscale conditions over the trumpetshaped topography of the Pearl River Delta. The counteraction between the warm, moist southerly flow and the precipitation-produced cold pool outflows repeatedly triggered new updrafts and convection cells upstream, supporting the initiation and maintenance of a long-lived (quasistationary) back-building mesoscale convective system (Huang et al., 2019a). The sustained and moderately slantwise strong vertical updrafts, supported by the combination of buoyancy and dynamic acceleration and the shallow weak cool pools, generated the extreme precipitation rate (Huang et al., 2019b). Huang et al. (2019a) mentioned that, the WSM6 microphysical parameterization scheme produced better simulations compared to other double-moment microphysical parameterization schemes in this event. Therefore, it is necessary to have an in-depth understanding of the differences among the simulations using different microphysics parameterization schemes for this extreme rainfall. In this study, we adopted the same model setups as described in Huang et al. (2019a) except for microphysics parameterization schemes. The WRF model version 3.8.1 (Skamarock et al., 2008) was configured with three one-way nested domains with horizontal resolution of 4.5, 1.5, and 0.5 km, respectively. The model was integrated from 1200 UTC 06 to 0000 UTC 07 May 2017 (12 hours), covering the intense period of rainfall over the Guangzhou city. The 0.5-km domain was set up in LES mode, that is, no planetary boundary layer (PBL) parameterization scheme was used in this domain. Observation data from surface automatic weather stations, radiosondes, and wind profilers were assimilated into the model by the four-dimensional data assimilation (FDDA, Stauffer and Seaman, 1990) method during 1200 UTC 06-0000 UTC 07 May 2017 for 4.5- and 1.5-km domains and 1200–1600 UTC 06 May 2017 for 0.5-km domain (Huang et al., 2019a). The model simulation with the single-moment WSM6 scheme (Hong and Lim, 2006) reproduced this extreme rainfall event successfully, in terms of convection initiation, propagation, and heavy rainfall amount (Huang et al., 2019a). More details of the model configuration and verification can be found in Huang et al. (2019a). The original simulation with the WSM6 scheme is referred to as the WSM6 run. There are other two advanced double-moment microphysics schemes used to compare in this study, i.e., the Thompson (Thompson et al., 2008) and Morrison (Morrison et al., 2009) microphysics schemes. The simulations using Thompson and Morrison microphysics schemes are referred to as the THOM run and MORR run hereafter, respectively. All these three schemes predict mixing ratios of five cloud species, including cloud water, cloud ice, rainwater, snow and graupel. The detailed differences among these three cloud microphysics schemes can be referred to Bao et al. (2019). The model output data in the 0.5-km domain at 10-min intervals are used for analysis in this study. 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 #### 154 3 Results 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 # 3.1 Radar reflectivity and precipitation The radar reflectivity and precipitation fields are examined first to investigate the overall differences among the simulations with different microphysics schemes. Figure 1 shows observed and simulated composite reflectivity at 1600, 1700, 1800, 2100, 2200 and 2300 UTC 06 May 2017. In general, the simulated composite reflectivity from the simulations with different microphysics schemes are similar to each other in terms of the intensity and coverage (Fig. 1). A convection initiated and developed in Huadu District (HD) in all the simulations, which is consistent with the observations, though the simulated convection is displaced southwestward from the observation (Figs. 1a1-d3). The processes of simulated convections growing and merging resemble the observations. The simulated convective (composite reflectivity > 35 dBZ) and stratiform (15 dBZ) < composite reflectivity < 35 dBZ) coverages are consistent with the observations (Figs. 1a4–d6). There also exist some small differences among the simulations, e.g., the convection over the western Guangzhou (Figs. 1b4-d4). From the accumulated precipitation in the Guangzhou region from 1600 UTC 06 May to 0000 UTC 07 May 2017 (Fig. 2), all the simulations reproduce the two main observed rainfall centers, i.e., one in HD and the other one between HP and ZC. Both maximum observed accumulated precipitation in Region A and Region B are larger than 240 mm (Fig. 2a). In the WSM6 run (Fig. 2b), the maximum simulated accumulated precipitation in Region A is over 200 mm, and it is more than 240 mm in Region B. And the location of maximum accumulated precipitation center in Region B in the WSM6 run is very close to the observation (blue crosses in Figs. 2a and 2b). In the THOM run (Fig. 2c), both maximum accumulated precipitation in Region A and Region B are less than 160 mm. In the MORR run (Fig. 2d), the maximum accumulated precipitation in Region A can reach 160 mm but less than 200 mm, and than the observation. Therefore, the accumulated precipitation of WSM6 run is more consistent with observations than those of THOM and MORR runs, especially the maximum accumulated precipitation center between HP and ZC in Region B. The precipitation distributions are more dispersed and the maximum accumulated precipitation is weaker in THOM and MORR runs, especially in THOM run. Besides, the edge of accumulated precipitation distribution extends more southward in WSM6 run than those in THOM and MORR runs, indicating the convective system moves faster in WSM6 run resembling the observations. To investigate the differences in the precipitation evolution among the simulations in more detail, Fig. 3 shows time series of area-averaged precipitation rate and water mass flux in the two rainfall centers (Region A and Region B) in WSM6, THOM and MORR runs from 1500 UTC 06 May to 0000 UTC 07 May 2017 in 10-min intervals. The area-averaged water mass flux is defined as 190 $$QFlux = \oiint_{S} \sum_{\mathbf{x} \in (\mathbf{v}, \mathbf{c}, \mathbf{r}, \mathbf{i}, \mathbf{s}, \mathbf{g})} \rho Q_{\mathbf{x}} V_{\mathbf{n}} d\sigma / A + \iint_{A} E_{\mathbf{S}} d\sigma / A,$$ where S includes the six surfaces bounding the volume within the examined region, ρ is air density, Q_x is mixing ratio of water species including water vapor (v), cloud water (c), rainwater (r), cloud ice (i), snow (s) and graupel (g), V_n is a wind vector component normal to the surface (inward direction is positive and outward direction is negative), $d\sigma$ is an area element on the surface, A is the examined region area, and E_S is surface evaporation flux (nearly zero in this case). That is, QFlux is the area-averaged net flux of water mass through the surfaces bounding the volume. The precipitation rate in Region A is generally larger in WSM6 run than those in THOM and MORR runs, particularly in period of 1810–2130 UTC 06 May 2017 (Fig. 3a). However, this relationship is different in Region B (Fig. 3b). From 2020 UTC 06 May, the area-averaged precipitation rates in Region B from THOM and MORR runs are generally larger than that from WSM6 run (Fig. 3b), while the maximum accumulated precipitation in Region B from THOM and MORR runs are smaller than that from WSM6 run (Figs. 2b–d). It is mainly due to the more dispersed precipitation distributions in THOM and MORR runs. The variation of precipitation rate is consistent with the variation of *QFlux*, and the variation of precipitation rate is delayed slightly in the both regions (Fig. 3), indicating incoming water mass quickly transforms into precipitation. From the precipitation rates in Region A (Fig. 3a), they are similar among the three simulations by 1800 UTC 06 May 2017, and then their differences enlarge. The difference among the model configurations of the three runs is only the microphysics schemes. The microphysics schemes may produce different amounts of latent heat, which will influence the atmospheric buoyancy and then change model dynamics (Huang et al., 2018; Huang et al., 2019b). Therefore, the difference in latent heating should dominate the differences among the three simulations. To confirm this hypothesis, three new sensitivity experiments were conducted to examine the role of latent heating by turning off latent heat from the microphysics schemes. The time series of area-averaged precipitation rate and *QFlux* in the two regions (Region A and Region B) in the no-latent-heating experiments from 1500 UTC 06 May to 0000 UTC 07 May 2017 in 10-min intervals are shown in Figs. 3c and 3d. After turning off latent heating from the microphysics schemes, the precipitation rates and *QFlux* in both regions from all the sensitivity experiments are almost the same in terms of the intensity and variation (Figs. 3c and 3d), which confirms the latent heating dominates the differences among the simulations with different microphysics schemes. ## 3.2 Thermodynamic differences Latent heat release can influence the thermodynamic structures (equivalent potential temperature) and then change atmospheric buoyancy and dynamic features (e.g., vertical motions, Huang et al., 2019b). The microphysics-induced vertical motions will in turn affect the cloud microphysical processes and cloud structure. To investigate the differences in thermodynamic and dynamic structures among the three simulations, Fig. 4 shows
height-latitude cross sections of simulated equivalent potential temperature (θ_{ℓ}), density potential temperature (θ_{ℓ}) and along crosssection winds in 0.5-km domain of the WSM6, THOM and MORR runs at 1800, 1900, 2200 and 2300 UTC 06 May 2017. The θ_0 here is defined following Emanuel (1994) and Panosetti et al. (2016). At the early stage of storm development (near HD at 1800 and 1900 UTC), the differences in the thermodynamic fields mainly exist in the storm region (Figs. 4a1–c2). There is larger θ_e in the upper levels within the storm region in the WSM6 run, followed by the MORR run, and the weakest in the THOM run (Figs. 4a1-c2), indicating stronger buoyancy exists in the upper levels in the WSM6 run. Accordingly, the vertical motion is relatively stronger in the WSM6 and MORR runs than that in the THOM run. There exists obvious cold anomaly in the lower levels in the WSM6 run (Figs. 4a1 and a2), indicating the stronger and deeper cold pool in the WSM6 run. At the later stage of storm (near the second rainfall center at 2200 and 2300 UTC), the thermodynamic fields have obvious differences among the different simulations due to the influence of the former convections and cold pool distributions (Figs. 4a3–c4). The height of strong warm anomaly in the upper levels is lower in the stage than the former stage. The coverages of warm anomaly ($\theta_e > 342$ K) are larger in upper levels in the THOM and MORR runs than that in the WSM6 run. The cold pool boundary (indicated by the 300-K θ_{ρ}) extends more southward in the WSM6 run than those in the THOM and MORR runs, indicating stronger cold pool is simulated in the WSM6 run. It is corresponding to the more southward distribution of accumulated precipitation in the WSM6 run (Fig. 2). 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 To further explore the causes of the differences in the thermodynamic fields among the simulations, vertical profiles of spatiotemporal-averaged potential temperature tendencies due to latent heating/cooling rate of condensation/evaporation (TH LHR_{vl}), latent heating/cooling rate of deposition/sublimation (TH LHR_{vi}), latent heating/cooling rate of freezing/melting (TH LHR_{li}) and total latent heating/cooling rate (TH LHRT) in Region A during 1800-1900 UTC 06 May 2017 and in Region B during 2200–2300 UTC 06 May 2017 in the WSM6, THOM and MORR runs are shown in Fig. 5. In Region A during 1800-1900 UTC 06 May 2017, TH LHRT is obviously larger in the WSM6 (maximum is $\sim 2.8 \times 10^{-3} \, \mathrm{K \ s^{-1}}$) than those in the THOM (maximum is $\sim 2.1 \times 10^{-3}$ K s⁻¹) and MORR (maximum is $\sim 2.3 \times 10^{-3}$ K s⁻¹) runs in particular above the 0 °C layer (Figs. 5a, c and e), which causes the differences in θ_e in the upper levels in the three simulations shown in Figs. 4a1–c2. The total cooling tendency (TH LHRT $< 0 \text{ K s}^{-1}$) in the lower troposphere below 1 km is stronger in the WSM6 run (Fig. 5a), resulting in stronger cold pool in the WSM6 run than in THOM and MORR runs (Fig. 4). TH LHR_{vl} dominates the total latent heating below ~7 km especially near the 0 °C layer in the three simulations (Figs. 5a, c and e). TH LHR_{vi} is dominant above ~7 km in the three simulations, and relatively stronger in WSM6 and MORR runs. TH LHR_{li} is smaller than TH LHR_{vl} and TH LHR_{vi} in the three simulations. The latent cooling due to TH LHR_{li} exists from surface to the height of 0 °C in the WSM6 run, while it exists mainly from ~2 km to the height of 0 °C in THOM and MORR runs (Figs. 5a, c and e), which is associated with the ice-phase hydrometeor (especially graupel) distribution discussed below. In Region B during 2200-2300 UTC 06 May 2017, TH LHRT is larger in THOM (maximum is $\sim 2.6 \times 10^{-3} \text{ K s}^{-1}$) and MORR (maximum is $\sim 2.3 \times 10^{-3} \text{ K s}^{-1}$) runs than that in the WSM6 (maximum is $\sim 2.0 \times 10^{-3}$ K s⁻¹) run (Figs. 5b, d and f). The height of maximum TH LHRT dominated by TH LHR_{vl} is lower during 2200–2300 UTC than that during 1800–1900 UTC in the 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 three simulations, and TH_LHR_{vi} weakens meanwhile, indicating the importance of warm-rain processes during 2200–2300 UTC (Huang et al., 2019b). The specific microphysical processes causing these differences in the latent heating profiles will be investigated in the next section. ## 3.3 Microphysical differences 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 The latent heating differences among the three runs are attributed to the differences in microphysical processes. Therefore, the detailed microphysical processes in the three simulations will be compared in this section. The distribution of cloud hydrometeors is examined first. Figure 6 shows the vertical profiles of spatiotemporal-averaged mixing ratios of cloud water (Q_c) , rain water (Q_r) , cloud ice (Q_i) , snow (Q_s) and graupel (Q_g) in Region A during 1800–1900 UTC 06 May 2017 and in Region B during 2200-2300 UTC 06 May 2017 in the WSM6, THOM and MORR runs. In Region A during 1800-1900 UTC 06 May 2017, Q_c has two peaks in all the three runs, one above the 0 °C layer, the other below the 0 °C layer (Figs. 6a, c and e), which may be associated with the large-scale vertical motions (Fig. 4). The magnitudes of Q_c are a little larger in the WSM6 and THOM runs than that in the MORR run. The peak of Q_r can reach 0.52×10^{-3} kg kg⁻¹ in the WSM6 run, $\sim 0.50 \times 10^{-3}$ kg kg^{-1} in the THOM run, while $\sim 0.47 \times 10^{-3}~kg~kg^{-1}$ in the MORR run. Q_r can reach $0.46 \times 10^{-3}~kg$ kg^{-1} near the surface in the WSM6 run, however, it is just $\sim 0.33 \times 10^{-3}~kg~kg^{-1}$ in the THOM and MORR runs (Figs. 6a, c and e). The differences in ice-phase hydrometeors especially snow and graupel are relatively obvious. There is much snow in the MORR run (maximum can reach $0.40 \times$ 10^{-3} kg kg⁻¹), while the maxima of Q_s in the WSM6 and THOM runs are $\sim 0.12 \times 10^{-3}$ kg kg⁻¹ and $\sim 0.14 \times 10^{-3}$ kg kg⁻¹, respectively (Figs. 6a, c and e). Much graupel is simulated in the WSM6 run, and the peak of Q_g can reach 0.44×10^{-3} kg kg⁻¹ near the 0 °C layer (Fig. 6a). However, the amount of graupel is much less in the THOM and MORR runs, whose maxima of mixing ratio are $0.20 \times$ 10^{-3} kg kg⁻¹ and 0.22×10^{-3} kg kg⁻¹, respectively (Figs. 6c and e). The magnitudes of cloud ice are relatively small in the all simulations (Figs. 6a, c and e). The ice-phase hydrometeors in the THOM and MORR runs mainly exist above the 0 °C layer (the total mixing ratio of ice-phase hydrometeors shown in Figs. 6c and e), while there are abundant ice-phase hydrometeors below the 0 °C layer (Fig. 6a), resulting in stronger latent cooling associated with melting in the lower levels (Fig. 5a). In Region B during 2200-2300 UTC 06 May 2017, the peaks of cloud water enlarge in the three runs, especially in the THOM run (maximum is $\sim 0.28 \times 10^{-3}$ kg kg⁻¹). Q_r near the surface decreases to $\sim 0.38 \times 10^{-3} \text{ kg kg}^{-1}$ in the WSM6 run (Fig. 6a), while it increases to ~ 0.40 × 10⁻³ kg kg⁻¹ in the THOM and MORR runs (Figs. 6d and f). It indicates warm-rain processes enhance during the second stage of the rainfall. All the ice-phase hydrometeors especially graupel decrease in the WSM6 run (Fig. 6b), while they don't change a lot in the THOM run (Fig. 6d). The maximum of $Q_{\rm g}$ decreases by $\sim 0.1 \times 10^{-3}$ kg kg⁻¹, while the peak of $Q_{\rm s}$ increases by $\sim 0.12 \times 10^{-3}$ 10^{-3} kg kg⁻¹ in the MORR run (Fig. 6f). Figs. 7–9 show vertical profiles of spatiotemporal-averaged microphysical conversion rates of cloud water, rain water, cloud ice, snow and graupel in Region A during 1800–1900 UTC 06 May 2017 in the WSM6, THOM and MORR runs, respectively. In the WSM6 run, water vapor condensation is the dominant production term of cloud water, and the main sink terms of cloud water are collection by rain, collection by snow and graupel and autoconversion to rain (Fig. 7a). The main source and sink terms of cloud water in the THOM and MORR runs (Figs. 8a and 9a) are the same as those in the WSM6 run. Among the three runs, the stronger water vapor condensation in the WSM6 run (Fig. 7a) results in stronger latent heating due to TH LHR_{vl} (Fig. 5a). The common dominant pathways for rain water production in the three runs are rain collecting 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 cloud water and graupel melting (Figs. 7–9b). The rainwater evaporation is the common sink term of rain water below the 0 °C layer (Figs. 7–9b), and stronger in the WSM6 run (Fig. 7b), corresponding to the stronger cold pool in the WSM6 run (Fig. 4). From the raindrop size distribution at 0.5 km in Region A during 1800–1900 UTC 06 May 2017 (Fig. 10), there are much more small raindrops in the WSM6 run, which is more favorable to evaporation. The near-surface sedimentation of rain water is stronger in the WSM6 run (Fig. 7b), followed by the MORR run (Fig. 9b), and it is the smallest in the THOM run (Fig. 8b). It is consistent with the larger surface precipitation rate in the WSM6 and MORR runs (Fig. 3a). 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 The source and sink terms of cloud ice are relatively larger in the WSM6 run compared to those in the THOM and MORR runs (Figs. 7–9c), corresponding to larger amount of cloud ice in the upper troposphere in the WSM6 run than the other two runs (Figs. 6a, c and e). The water vapor deposition to form cloud ice is the dominant cloud ice production term in the WSM6 run (Fig. 7c), which
mainly contributes to latent heating due to TH LHR_{vi} (Fig. 5a). As for the snow, the total snow tendency in the MORR run is the largest among the three runs due to stronger collection of rain water and cloud water by snow to form snow and the relatively smaller sink terms of snow in the MORR run (Figs. 7–9d), resulting in much more snow in the MORR run than the other two runs (Figs. 6a, c and e). The common dominant snow production terms in the THOM and MORR runs are snow collecting cloud water and water vapor deposition to form snow (Figs. 8d and 9d). The water vapor deposition to form snow in these two runs mainly contributes to latent heating due to TH LHR_{vi} (Figs. 5c and e). As for the graupel production, the total graupel tendency near the 0 °C layer in the WSM6 run is the largest (mainly due to the strongest sedimentation of graupel) among the three runs (Figs. 7-9e), resulting in much more graupel in the WSM6 run than the THOM and MORR runs (Figs. 6a, c and e). The source and sink terms of graupel are mainly above 2 km in the THOM run, corresponding to the graupel distribution in the THOM run (Fig. 6c). The main graupel production terms in the WSM6 run are collection between rain and snow to form graupel, collection of cloud water by averaged snow and graupel and collection between ice and rain to form graupel (Fig. 7e). The common main graupel production term in the THOM and MORR runs is collection of cloud water by graupel (Figs. 8e and 9e). The dominant graupel consumption in the three runs is graupel melting (Figs. 7–9e). The dominant microphysical processes in Region B during 2200–2300 UTC 06 May 2017 are the same as those in Region A during 1800–1900 UTC 06 May 2017 in the three runs, and the warm rain processes enhance and ice phase processes weaken (not shown), which is consistent with the distributions of thermodynamic fields (Figs. 4a3–c4) and cloud hydrometeors (Figs. 6b, d and f). Therefore, latent heating due to water vapor condensation to form cloud water dominates the differences among the three runs. Rain water evaporation dominates the cold pool intensity, which influences the convection moving and propagation. To confirm these conclusions, the other two groups of sensitivity experiments are conducted. One group turns off the latent heat due to water vapor condensation to form cloud water, and the other group turns off the latent heat due to rain water evaporation. Figure 11 shows the 8-h accumulated precipitation in the 0.5-km domain of the WSM6, THOM and MORR runs after turning off latent heating due to water vapor condensation to form cloud water and rain water evaporation in the Guangzhou region from 1600 UTC 06 May to 0000 UTC 07 May 2017. After turning off latent heating from water vapor condensation, precipitation in the three runs almost disappear (Figs. 11a–c), indicating the dominant role of condensation latent heating. After turning off latent cooling from rain water evaporation, precipitation in the three runs are more concentrated and much heavier compared to the original runs, and they are similar to each other in terms of distribution and intensity, especially between the THOM and MORR runs (Figs. 11d–f). The hydrometeor distribution and microphysical processes are similar with those in Region A in the original experiments, except larger magnitudes in the sensitivity experiments (not shown). It indicates rain water evaporation cooling dominates the cold pool intensity, and then influences the convection moving and propagation, and finally affects the intensity and distribution of surface precipitation. # 4 Summary and conclusions In this study, three bulk microphysics schemes in the Weather Research and Forecasting (WRF) model, the single moment WSM6 scheme and advanced double moment Thompson and Morrison schemes, are selected to simulate an extreme rainfall event in the coastal metropolitan city of Guangzhou, China during 6–7 May 2017. The detailed comparison in terms of radar reflectivity, precipitation, thermodynamic fields and microphysical processes are conducted to investigate how microphysics scheme influences the heavy rainfall among the three runs. The major findings are summarized as follows. (1) All simulations can reproduce the convection initiation in HD and the two main heavy rainfall centers in Guangzhou, which are consistent with the observations during this extreme rainfall event. However, the accumulated precipitation in the simulation using WSM6 scheme resembles the observations in terms of intensity and distribution better. The simulation using WSM6 scheme can produce both stronger accumulated precipitation and precipitation rate in the first heavy rainfall center in HD, and it produces stronger accumulated precipitation though the precipitation rate is relatively weaker in the second heavy rainfall center compared to the simulations using the Thompson and Morrison schemes which have more dispersed precipitation distributions. (2) The differences in latent heating from the different microphysics schemes dominate the differences in the thermodynamic fields, storm development and surface precipitation among the three simulations. After turning off latent heating from the microphysics schemes, the precipitation rates and water mass fluxes in both heavy rainfall regions significantly reduce (precipitation rates are close to zero) and are almost the same in terms of the intensity and variation in the three sensitivity experiments. (3) Much more graupel is simulated in the simulation using the WSM6 scheme, while much more snow is simulated in the simulation using the Morrison scheme. The latent heating from the water vapor condensation is dominant in all the three simulations, and its differences lead to different convection development. Stronger latent cooling from the rain water evaporation in the low troposphere in the simulation using the WSM6 scheme generates stronger cold pool, which influences convection moving and subsequent propagation, and finally the intensity and distribution of surface precipitation. It answers why less amount of rain water, weaker latent heating, and smaller precipitation rate are simulated in the second heavy rainfall center in the simulation using the WSM6 scheme, while finally larger accumulated precipitation is produced in this simulation. These results demonstrate the importance of the warm-rain processes including the water vapor condensation and rain water evaporation in this extreme rainfall event. The latent heating from the water vapor condensation dominates the convection initiation and storm development. The latent cooling from the rain water evaporation dominates the cold pool intensity, which influences the storm moving and subsequent convection propagation. The different simulation results using different microphysics schemes mainly result from the differences in these two processes. And the differences in these microphysical processes may be attributed to different rain water production, drop size distributions, conversion rate parameterizations, etc. Therefore, how to improve the expression of these processes in the model in the simulation and forecast of tropical convection requires more attention in future. #### Acknowledgments This work was partially supported by the National Key R&D Program of China (2018YFC1507606) and the National Natural Science Foundation of China (41705031). Part of this work was supported by the National Center of Meteorology, Abu Dhabi, UAE under the UAE Research Program for Rain Enhancement Science. The authors appreciate editor and two anonymous reviewers for their comments that contribute to improving the manuscript. The data used in this study can be download online (through https://pan.baidu.com/s/1Hh8gSXpmPZ1UE8-n06-e7g). The authors acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. NCAR is sponsored by the National Science Foundation. #### References 419 420 Adams-Selin, R.D., van den Heever, S.C., Johnson, R.H., 2013. Impact of Graupel 421 Parameterization Schemes on Idealized Bow Echo Simulations. Monthly Weather Review 422 141, 1241–1262. https://doi.org/10.1175/MWR-D-12-00064.1 423 Bao, J.-W., Michelson, S.A., Grell, E.D., 2019. Microphysical Process Comparison of Three 424 Microphysics Parameterization Schemes in the WRF Model for an Idealized Squall-Line 425 Case Study. Monthly Weather Review 147, 3093–3120. https://doi.org/10.1175/MWR-D-18-426 0249.1 Bryan, G.H., Morrison, H., 2012. Sensitivity of a Simulated Squall Line to Horizontal Resolution 427 428 and Parameterization of Microphysics. Monthly Weather Review 140, 202-225. 429 https://doi.org/10.1175/MWR-D-11-00046.1 430 Cassola, F., Ferrari, F., Mazzino, A., 2015. Numerical simulations of Mediterranean heavy 431 precipitation events with the WRF model: A verification exercise using different approaches. 432 Atmospheric Research 164–165, 210–225. https://doi.org/10.1016/j.atmosres.2015.05.010 433 Choi, Y., Shin, D.-B., Joh, M., 2018. Assessment of WRF microphysics schemes in simulation of extreme precipitation events based on microwave radiative signatures. International Journal 434 435 of Remote Sensing 39, 8527–8551. https://doi.org/10.1080/01431161.2018.1488288 436 Dawson, D.T., Xue, M., Milbrandt, J.A., Yau, M.K., 2010. Comparison of Evaporation and Cold 437 Pool Development between Single-Moment and Multimoment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms. Monthly Weather Review 138, 1152-438 439 1171. https://doi.org/10.1175/2009MWR2956.1 440 Emanuel, K.A., 1994. Atmospheric convection. Oxford University Press on Demand. - 441 Falk, N.M., Igel, A.L., Igel, M.R., 2019. The Relative Impact of Ice Fall Speeds and Microphysics - Parameterization Complexity on
Supercell Evolution. Monthly Weather Review 147, 2403– - 443 2415. https://doi.org/10.1175/MWR-D-18-0417.1 - 444 Fan, J., Han, B., Varble, A., Morrison, H., North, K., Kollias, P., Chen, B., Dong, X., Giangrande, - S.E., Khain, A., Lin, Y., Mansell, E., Milbrandt, J.A., Stenz, R., Thompson, G., Wang, Y., - 2017. Cloud-resolving model intercomparison of an MC3E squall line case: Part I— - 447 Convective updrafts. Journal of Geophysical Research: Atmospheres 122, 9351–9378. - 448 <u>https://doi.org/10.1002/2017JD026622</u> - Han, M., Braun, S.A., Matsui, T., Iguchi, T., 2018. Comparisons of bin and bulk microphysics - schemes in simulations of topographic winter precipitation with radar and radiometer - measurements. Quarterly Journal of the Royal Meteorological Society 144, 1926–1946. - 452 <u>https://doi.org/10.1002/qj.3393</u> - Hong, S.-Y., Lim, J.-O.J., 2006. The WRF single-moment 6-class microphysics scheme (WSM6). - Journal of the Korean Meteorological Society 42, 129–151. - Huang, Y., Cui, X., 2015. Dominant cloud microphysical processes of a torrential rainfall event in - 456 Sichuan, China. Advances in Atmospheric Sciences 32, 389–400. - 457 <u>https://doi.org/10.1007/s00376-014-4066-7</u> - Huang, Y., Cui, X., Li, X., 2016a. A three-dimensional WRF-based precipitation equation and its - application in the analysis of roles of surface evaporation in a torrential rainfall event. - 460 Atmospheric Research 169, 54–64. https://doi.org/10.1016/j.atmosres.2015.09.026 - Huang, Y., Cui, X., Wang, Y., 2016b. Cloud microphysical differences with precipitation intensity - in a torrential rainfall event in Sichuan, China. Atmospheric and Oceanic Science Letters 9, - 463 90–98. https://doi.org/10.1080/16742834.2016.1139436 464 Huang, Y., Liu, Yubao, Liu, Yuewei, Li, H., Knievel, J.C., 2019a. Mechanisms for a Record-Breaking Rainfall in the Coastal Metropolitan City of Guangzhou, China: Observation 465 466 Analysis and Nested Very Large Eddy Simulation With the WRF Model. Journal of 467 Geophysical Research: Atmospheres 124, 1370-1391. 468 https://doi.org/10.1029/2018JD029668 Huang, Y., Liu, Yubao, Liu, Yuewei, Knievel, J.C., 2019b. Budget Analyses of a Record-Breaking 469 470 Rainfall Event in the Coastal Metropolitan City of Guangzhou, China. Journal of Geophysical 471 Research: Atmospheres. https://doi.org/10.1029/2018JD030229 472 Huang, Y., Liu, Yubao, Xu, M., Liu, Yuewei, Pan, L., Wang, H., Cheng, W.Y.Y., Jiang, Y., Lan, 473 H., Yang, H., Wei, X., Zong, R., Cao, C., 2018. Forecasting severe convective storms with 474 WRF-based RTFDDA radar data assimilation in Guangdong, China. Atmospheric Research 209, 131–143. https://doi.org/10.1016/j.atmosres.2018.03.010 475 476 Huang, Y., Wang, Y., Cui, X., 2019c. Differences between Convective and Stratiform 477 Precipitation Budgets in a Torrential Rainfall Event. Advances in Atmospheric Sciences 36, 478 495–509. https://doi.org/10.1007/s00376-019-8159-1 479 Johnson, M., Jung, Y., Milbrandt, J.A., Morrison, H., Xue, M., 2019. Effects of the Representation 480 of Rimed Ice in Bulk Microphysics Schemes on Polarimetric Signatures. Monthly Weather 481 Review. https://doi.org/10.1175/MWR-D-18-0398.1 Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., Phillips, V., 2004. Simulation of Effects of 482 483 Atmospheric Aerosols on Deep Turbulent Convective Clouds Using a Spectral Microphysics Mixed-Phase Cumulus Cloud Model. Part I: Model Description and Possible Applications. 484 485 Journal of the Atmospheric Sciences 61, 2963–2982. https://doi.org/10.1175/JAS-3350.1 - 486 Khain, A.P., Beheng, K.D., Heymsfield, A., Korolev, A., Krichak, S.O., Levin, Z., Pinsky, M., - Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S.C., Yano, J.-I., 2015. - 488 Representation of microphysical processes in cloud-resolving models: Spectral (bin) - microphysics versus bulk parameterization: BIN VS BULK. Reviews of Geophysics 53, 247– - 490 322. https://doi.org/10.1002/2014RG000468 - Labriola, J., Snook, N., Xue, M., Thomas, K.W., 2019. Forecasting the 8 May 2017 Severe Hail - Storm in Denver, Colorado, at a Convection-Allowing Resolution: Understanding Rimed Ice - Treatments in Multimoment Microphysics Schemes and Their Effects on Hail Size Forecasts. - 494 Monthly Weather Review 147, 3045–3068. https://doi.org/10.1175/MWR-D-18-0319.1 - Lee, H., Baik, J.-J., 2018. A Comparative Study of Bin and Bulk Cloud Microphysics Schemes in - 496 Simulating a Heavy Precipitation Case. Atmosphere 9, 475. - 497 https://doi.org/10.3390/atmos9120475 - 498 Li, X., Tao, W.-K., Khain, A.P., Simpson, J., Johnson, D.E., 2009. Sensitivity of a Cloud- - Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part I: Comparisons. - Journal of the Atmospheric Sciences 66, 3–21. https://doi.org/10.1175/2008JAS2646.1 - 501 Luo, L., Xue, M., Zhu, K., Zhou, B., 2018. Explicit Prediction of Hail in a Long-Lasting - Multicellular Convective System in Eastern China Using Multimoment Microphysics - Schemes. Journal of the Atmospheric Sciences 75, 3115–3137. https://doi.org/10.1175/JAS- - 504 D-17-0302.1 - Mohan, P.R., Srinivas, C.V., Yesubabu, V., Baskaran, R., Venkatraman, B., 2019. Tropical - cyclone simulations over Bay of Bengal with ARW model: Sensitivity to cloud microphysics - 507 schemes. Atmospheric Research 230, 104651. - 508 https://doi.org/10.1016/j.atmosres.2019.104651 509 Morrison, H., Milbrandt, J., 2011. Comparison of Two-Moment Bulk Microphysics Schemes in 510 Idealized Supercell Thunderstorm Simulations. Monthly Weather Review 139, 1103–1130. 511 https://doi.org/10.1175/2010MWR3433.1 512 Morrison, H., Milbrandt, J.A., Bryan, G.H., Ikeda, K., Tessendorf, S.A., Thompson, G., 2015. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle 513 514 Properties. Part II: Case Study Comparisons with Observations and Other Schemes. Journal of the Atmospheric Sciences 72, 312–339. https://doi.org/10.1175/JAS-D-14-0066.1 515 516 Morrison, H., Thompson, G., Tatarskii, V., 2009. Impact of Cloud Microphysics on the 517 Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of 518 and Two-Moment Schemes. Monthly Weather Review 137, 991–1007. 519 https://doi.org/10.1175/2008MWR2556.1 520 Panosetti, D., Böing, S., Schlemmer, L., Schmidli, J., 2016. Idealized Large-Eddy and Convection-521 Resolving Simulations of Moist Convection over Mountainous Terrain. Journal of the Atmospheric Sciences 73, 4021–4041. https://doi.org/10.1175/JAS-D-15-0341.1 522 523 Parodi, A., Tanelli, S., 2010. Influence of turbulence parameterizations on high-resolution 524 numerical modeling of tropical convection observed during the TC4 field campaign. Journal 525 of Geophysical Research 115. https://doi.org/10.1029/2009JD013302 Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G., 526 527 2008. A description of the Advanced Research WRF version 3. NCAR Technical note-475+ 528 STR. 529 Stauffer, D.R., Seaman, N.L., 1990. Use of four-dimensional data assimilation in a limited area 530 mesoscale model. Part I: experiments with synoptic-scale data. Monthly Weather Review 118 531 (6), 1250–1277. Thompson, G., Field, P.R., Rasmussen, R.M., Hall, W.D., 2008. Explicit Forecasts of Winter 532 533 Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a 5095-5115. 534 New Snow Parameterization. Monthly Weather Review 136, 535 https://doi.org/10.1175/2008MWR2387.1 536 Tiwari, S., Kar, S.C., Bhatla, R., 2018. Dynamic downscaling over western Himalayas: Impact of Research 537 cloud microphysics schemes. Atmospheric 201, 1-16.538 https://doi.org/10.1016/j.atmosres.2017.10.007 Van Weverberg, K., Vogelmann, A.M., Morrison, H., Milbrandt, J.A., 2012. Sensitivity of 539 Idealized Squall-Line Simulations to the Level of Complexity Used in Two-Moment Bulk 540 140, 541 Microphysics Schemes. Monthly Weather Review 1883–1907. https://doi.org/10.1175/MWR-D-11-00120.1 542 543 Xue, L., Fan, J., Lebo, Z.J., Wu, W., Morrison, H., Grabowski, W.W., Chu, X., Geresdi, I., North, 544 K., Stenz, R., Gao, Y., Lou, X., Bansemer, A., Heymsfield, A.J., McFarquhar, G.M., Rasmussen, R.M., 2017. Idealized Simulations of a Squall Line from the MC3E Field 545 546 Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic 547 Structure. Monthly Weather Review 145, 4789–4812. https://doi.org/10.1175/MWR-D-16-548 0385.1 ## Figure captions 550 564 565 566 567 - Fig. 1. (a1–a6) Observed and (b1–b6: WSM6 run; c1–c6: THOM run; d1–d6: MORR run) simulated (in 0.5-km domain) composite radar reflectivity (dBZ) over the Guangzhou region at 1600, 1700, 1800, 2100, 2200 and 2300 UTC 06 May 2017, respectively. The solid black lines represent Guangzhou City and its district borders. Tick marks are included every 50 km. The initials in (b1) are as follows: HD = Huadu District; CH = Conghua District; BY = Baiyun District; HP = Huangpu District; ZC = Zengcheng District; PY = Panyu District; NS = Nansha District. The dashed magenta rectangles represent the position of cross sections shown in Fig. 4. - Fig. 2. Accumulated precipitation (mm) in the (a) observation, (b) 0.5-km domain of WSM6 run, (c) THOM run and (d) MORR run in the Guangzhou region from 1600 UTC 06 May to 0000 UTC 07 May 2017. The blue crosses indicate the center of maximum accumulated precipitation in the observations. The black solid lines represent Guangzhou City and its district borders. The initials are the same as those in Fig. 1. Tick marks are included every 50 km. The dashed magenta rectangles represent the regions for average precipitation shown in Fig. 3. - **Fig. 3.** Time series of area-averaged precipitation rate (solid thick lines, mm h⁻¹) and water mass flux (circle-thin lines, mm h⁻¹) in (a) Region A and (b) Region B in 0.5-km domain of WSM6 (red), THOM (blue)
and MORR (black) runs from 1500 UTC 06 May to 0000 UTC 07 May 2017 in 10-min intervals. (c) as (a) and (d) as (b), but for the experiments turning off latent heat from the microphysics schemes. - Fig. 4. Height-latitude cross section of zonal-mean simulated equivalent potential temperature (color shaded in K), 300-K density potential temperature (solid black lines), along cross-section winds (vertical velocity amplified by a factor of 5) in 0.5-km domain of (a1–a4) WSM6 run, (b1– - 572 b4) THOM run and (c1-c4) MORR run at (a1, b1, and c1) 1800, (a2, b2, and c2) 1900, (a3, b3, - and c3) 2200, and (a4, b4, and c4) 2300 UTC 06 May 2017. - Fig. 5. Vertical profiles of spatiotemporal-averaged potential temperature tendencies (10^{-3} K s^{-1}) - 575 due to latent heating/cooling rate of condensation/evaporation (red lines, TH LHR_{vl}), latent - 576 heating/cooling rate of deposition/sublimation (blue lines, TH LHR_{vi}), latent heating/cooling rate - of freezing/melting (green lines, TH LHR_{li}) and total latent heating/cooling rate (black lines, - 578 TH_LHRT) in (a, c, e) Region A during 1800–1900 UTC 06 May 2017 and in (b, d, f) Region B - 579 during 2200–2300 UTC 06 May 2017 in the (a, b) WSM6, (c, d) THOM and (e, f) MORR runs. - The horizontal dashed lines represent the height of 0 °C, and the vertical dashed lines represent 0 - 581 $K s^{-1}$. - Fig. 6. Vertical profiles of spatiotemporal-averaged mixing ratios (10⁻³ kg kg⁻¹) of cloud water - (blue lines, Q_c), rain water (red lines, Q_r), cloud ice (black lines, Q_i), snow (orange lines, Q_s), - graupel (green lines, Q_g) and sum of ice-phase hydrometeors ($Q_i + Q_s + Q_g$, black dashed lines) in - 585 (a, c, e) Region A during 1800–1900 UTC 06 May 2017 and in (b, d, f) Region B during 2200– - 586 2300 UTC 06 May 2017 in the (a, b) WSM6, (c, d) THOM and (e, f) MORR runs. The horizontal - dashed lines represent the height of 0 °C. - Fig. 7. Vertical profiles of spatiotemporal-averaged microphysical conversion rates (10⁻⁶ kg kg⁻¹ - s⁻¹) of (a) cloud water (C), (b) rain water (R), (c) cloud ice (I), (d) snow (S) and (e) graupel (G) in - Region A during 1800–1900 UTC 06 May 2017 in the WSM6 run. The total microphysics - 591 tendencies of cloud water (QCTEND), rain water (QRTEND), cloud ice (QITEND), snow - 592 (QSTEND) and graupel (QGTEND) are shown by black solid curves. The horizontal dashed lines - represent the height of 0 °C. - **Fig. 8.** As in Fig. 7, but for the THOM run. 595 Fig. 9. As in Fig. 7, but for the MORR run. 596 Fig. 10. Raindrop size distribution at 0.5 km in Region A during 1800–1900 UTC 06 May 2017 597 in the WSM6 (blue), THOM (red) and MORR (black) runs. 598 Fig. 11. Accumulated precipitation (mm) in the 0.5-km domain of (a, d) WSM6 run, (b, e) THOM 599 run and (c, f) MORR run after turning off latent heat due to (a-c) water vapor condensation to 600 form cloud water and (d-f) rain water evaporation in the Guangzhou region from 1600 UTC 06 601 May to 0000 UTC 07 May 2017. The black solid lines represent Guangzhou City and its district 602 borders. The initials are the same as those in Fig. 1. Tick marks are included every 50 km. 603 **Fig. 1.** (a1–a6) Observed and (b1–b6: WSM6 run; c1–c6: THOM run; d1–d6: MORR run) simulated (in 0.5-km domain) composite radar reflectivity (dBZ) over the Guangzhou region at 1600, 1700, 1800, 2100, 2200 and 2300 UTC 06 May 2017, respectively. The solid black lines represent Guangzhou City and its district borders. Tick marks are included every 50 km. The initials in (b1) are as follows: HD = Huadu District; CH = Conghua District; BY = Baiyun District; HP = Huangpu District; ZC = Zengcheng District; PY = Panyu District; NS = Nansha District. The dashed magenta rectangles represent the position of cross sections shown in Fig. 4. **Fig. 2.** Accumulated precipitation (mm) in the (a) observation, (b) 0.5-km domain of WSM6 run, (c) THOM run and (d) MORR run in the Guangzhou region from 1600 UTC 06 May to 0000 UTC 07 May 2017. The blue crosses indicate the center of maximum accumulated precipitation in the observations. The black solid lines represent Guangzhou City and its district borders. The initials are the same as those in Fig. 1. Tick marks are included every 50 km. The dashed magenta rectangles represent the regions for average precipitation shown in Fig. 3. **Fig. 3.** Time series of area-averaged precipitation rate (solid thick lines, mm h⁻¹) and water mass flux (circle-thin lines, mm h⁻¹) in (a) Region A and (b) Region B in 0.5-km domain of WSM6 (red), THOM (blue) and MORR (black) runs from 1500 UTC 06 May to 0000 UTC 07 May 2017 in 10-min intervals. (c) as (a) and (d) as (b), but for the experiments turning off latent heat from the microphysics schemes. **Fig. 4.** Height-latitude cross section of zonal-mean simulated equivalent potential temperature (color shaded in K), 300-K density potential temperature (solid black lines), along cross-section winds (vertical velocity amplified by a factor of 5) in 0.5-km domain of (a1–a4) WSM6 run, (b1–b4) THOM run and (c1–c4) MORR run at (a1, b1, and c1) 1800, (a2, b2, and c2) 1900, (a3, b3, and c3) 2200, and (a4, b4, and c4) 2300 UTC 06 May 2017. Fig. 5. Vertical profiles of spatiotemporal-averaged potential temperature tendencies (10^{-3} K s^{-1}) due to latent heating/cooling rate of condensation/evaporation (red lines, TH_LHR_{vl}), latent heating/cooling rate of deposition/sublimation (blue lines, TH_LHR_{vi}), latent heating/cooling rate of freezing/melting (green lines, TH_LHR_{li}) and total latent heating/cooling rate (black lines, TH_LHRT) in (a, c, e) Region A during 1800–1900 UTC 06 May 2017 and in (b, d, f) Region B during 2200–2300 UTC 06 May 2017 in the (a, b) WSM6, (c, d) THOM and (e, f) MORR runs. The horizontal dashed lines represent the height of 0 °C, and the vertical dashed lines represent 0 K s⁻¹. Fig. 6. Vertical profiles of spatiotemporal-averaged mixing ratios ($10^{-3} \text{ kg kg}^{-1}$) of cloud water (blue lines, Q_c), rain water (red lines, Q_r), cloud ice (black lines, Q_i), snow (orange lines, Q_s), graupel (green lines, Q_g) and sum of ice-phase hydrometeors ($Q_i + Q_s + Q_g$, black dashed lines) in (a, c, e) Region A during 1800–1900 UTC 06 May 2017 and in (b, d, f) Region B during 2200– 2300 UTC 06 May 2017 in the (a, b) WSM6, (c, d) THOM and (e, f) MORR runs. The horizontal dashed lines represent the height of 0 °C. **Fig. 7.** Vertical profiles of spatiotemporal-averaged microphysical conversion rates (10⁻⁶ kg kg⁻¹ s⁻¹) of (a) cloud water (C), (b) rain water (R), (c) cloud ice (I), (d) snow (S) and (e) graupel (G) in Region A during 1800–1900 UTC 06 May 2017 in the WSM6 run. The total microphysics tendencies of cloud water (QCTEND), rain water (QRTEND), cloud ice (QITEND), snow (QSTEND) and graupel (QGTEND) are shown by black solid curves. The horizontal dashed lines represent the height of 0 °C. Fig. 8. As in Fig. 7, but for the THOM run. Fig. 9. As in Fig. 7, but for the MORR run. **Fig. 10.** Raindrop size distribution at 0.5 km in Region A during 1800–1900 UTC 06 May 2017 in the WSM6 (blue), THOM (red) and MORR (black) runs. **Fig. 11.** Accumulated precipitation (mm) in the 0.5-km domain of (a, d) WSM6 run, (b, e) THOM run and (c, f) MORR run after turning off latent heat due to (a–c) water vapor condensation to form cloud water and (d–f) rain water evaporation in the Guangzhou region from 1600 UTC 06 May to 0000 UTC 07 May 2017. The black solid lines represent Guangzhou City and its district borders. The initials are the same as those in Fig. 1. Tick marks are included every 50 km.